Computably Enumerable Reals and Uniformly Presentable Ideals

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computably Enumerable Reals and Uniformly Presentable Ideals

We study the relationship between a computably enumerable real and its presentations. A set A presents a computably enumerable real α if A is a computably enumerable prefix-free set of strings such that α = ∑ σ∈A 2 −|σ|. Note that ∑ σ∈A 2 −|σ| is precisely the measure of the set of reals that have a string in A as an initial segment. So we will simply abbreviate ∑ σ∈A 2 −|σ| by μ(A). It is know...

متن کامل

Presentations of computably enumerable reals

We study the relationship between a computably enumerable real and its presentations: ways of approximating the real by enumerating a prefix-free set of binary strings.

متن کامل

Degree-Theoretic Aspects of Computably Enumerable Reals

A real is computable if its left cut, L( ); is computable. If (qi)i is a computable sequence of rationals computably converging to ; then fqig; the corresponding set, is always computable. A computably enumerable (c.e.) real is a real which is the limit of an increasing computable sequence of rationals, and has a left cut which is c.e. We study the Turing degrees of representations of c.e. real...

متن کامل

A Note on the Differences of Computably Enumerable Reals

We show that given any non-computable left-c.e. real α there exists a left-c.e. real β such that α , β + γ for all left-c.e. reals and all right-c.e. reals γ. The proof is non-uniform, the dichotomy being whether the given real α is Martin-Löf random or not. It follows that given any universal machine U, there is another universal machine V such that the halting probability ΩU of U is not a tra...

متن کامل

Upper bounds on ideals in the computably enumerable Turing degrees

We study ideals in the computably enumerable Turing degrees, and their upper bounds. Every proper Σ0 4 ideal in the c.e. Turing degrees has an incomplete upper bound. It follows that there is no Σ0 4 prime ideal in the c.e. Turing degrees. This answers a question of Calhoun (1993) [2]. Every properΣ0 3 ideal in the c.e. Turing degrees has a low2 upper bound. Furthermore, the partial order of Σ0...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: MLQ

سال: 2002

ISSN: 0942-5616,1521-3870

DOI: 10.1002/1521-3870(200210)48:1+<29::aid-malq29>3.0.co;2-o